OPC -

An introductory guide
to building payment
applications

& 1Xaris

Perfect Fit Payments

Locke .
visa REERECE T

Horizon 2020
Europe:an_ European Union funding
Commission for Researc| h & Innova tion

@ OPEN

PAYMENTS
CLOUD

Contents

Here you will find everything you need to get
started with writing your Application:

1. A brief introduction to the OPE project
2. Steps to develop an OPC Application

3. An overview of the Payment Model pre-
created by Ixaris

4. The APIs
5. Testing the Application
6. ‘Hello World’ example

A brief introduction to OPE

OPE is a two-year project, led by Ixaris and co-funded by the European Union that aims to open access to
innovative and competitive payment services to SMEs in the EU.

The aim of the project is to deliver the Open Payments Cloud (OPC) platform that brings together Application
Developers like you, Programme Managers (that operate Applications on behalf of their SME and corporate
clients) and Banks that ultimately power the underlying payment networks and infrastructure. This leads to an
ecosystem of Developer, Programme Manager and Financial Service Provider stakeholders.

In the spirit of Lean and Agile development, we have been engaging with Developers at various stages to
ensure that we deliver a system that addresses the more important problems for the various stakeholders.

To deal with the challenge of opening up access to financial systems we have had to come up with innovative
concepts of how to enable Programme Managers and Financial Service Providers to trust Applications
developed by third parties. To simplify things, we have done a bit of work behind the scenes so that you can
spend most of your time focusing on the actual Application rather than figuring out the concepts.

Steps to developing a Payment Application in OPC

In OPC, a developer develops their Application in their own preferred IDE, using their own preferred programming language
and using whichever Ul or API technology is most appropriate for their Application.

Unlike other banking APIs, OPC does not publish a standard set of banking APIs for the developer to choose from — a
developer is first expected to describe the functionality required by the Application they intend to develop and then the
relevant APIs are made available by OPC. The Application description is called the Payment Model of an Application.

Ixaris has pre-created an Application definition so that you, as the Developer, do not need to create one from scratch and
we will provide you with the corresponding APIs directly.

When development is complete, the Application can be tested using the OPC SandBox and the OPC Simulator and
subsequently published for Approval.

i v i e S S 0

The Payment Model defined by Ixaris

The illustration below shows the Payment Model pre-created by Ixaris.The model allows a Corporate to issue Virtual Cards
and load these cards with funds from a corporate balance funded via bank transfer. Based on this Payment Model, the
developer will get access to APIs that perform the following:

Manage entities of each type represented in the Payment model: e B

Manage instances of Corporates (Corporate Identity) | Corporate Identity] Identity
Manage instances of Virtual Cards (Managed Cards) ssucd o /;1 [7\\ isued 1o

Manage instances of Balances (Managed Accounts) > z <

Manage details of external bank accounts (External Account) [EEE.] _[Managed] &ai] pr—
Move funds across instrument instances: - —] -

From external bank account to internal balance (Deposit) —[@

From internal balance back to external bank Account (Withdrawal) @_ _IEI_ —
From internal balance onto Virtual Card (Transfer)

-

Example Application using the defined Payment Model

Example Application: A developer would like to extend the use of SharePoint intranet by a Corporate to allow
individuals to request and receive a Virtual Card to be used for corporate purchases (e.g. IT equipment)

The Developer will need to decide on the architecture of the Application, such as:

Hard-coding the Application to work only with one corporate, or choose to develop a more generic variant that allows the
Application to be used by multiple corporates

Determine how best to implement workflow — use SharePoint’s workflow or to add it as a feature of the Application

The Developer can subsequently use the APIs to:

Store information about a corporate on OPC

Create one or more managed account linked to a corporate

Allow an administrator to register an external bank account

Process payments from a registered external bank account to a managed account

Create a virtual card and assign it to an authorized employee

Load a pre-approved balance on a virtual card

Withdraw funds assigned to an employee for a specific purchase if transactions are not completed within period
Generate a report with all purchases completed by employees, organized by department

=) == - - B -

The OPC APIs

OPC defines these APIs to match the Application’s Payment Model — nothing more, nothing less. A developer will have access

to these APIs:

1. Corporate Identity API
= Create

Find

List

User Update

List/view profile

N/ 7~ 4.Managed Card APl
2. External Account 3. Manag;:il Account
. List, Find
API . Create, Update
+ List, Find 0 sy
List, Find . . . Block, Unblock
Create . Zr::;:; tl:_ Eia:te + Get Statement
List/view profile R . . List/view profile
/ (List/view profile) \ P /
5. Deposit API 6. Withdrawal API 6. Transfer API
Find ' Find
List Find List
List
Create . Create = C_reatfe)
List/view profile / _ s el / \- List/view profile /

) - B - B

APIs to deal with the Corporate
Identity Entity

APIs to deal with Payment
Instruments

APIs to deal with movement of
funds across Payment
Instruments

The OPC APIs

You can use Swagger to access the APl methods:

Instructions for accessing our APIs using Swagger are
available on the website.

You can refer to the Sample Application, or find them
directly via the Swagger link.

Deposits
External Accounts

58 /external_accounts/_/create

Implementation Notes
Create an external account with the given ID and details.

Response Class (Status 200)
Success

Model Example Value

{

“type": “string"
+
"profileld": 8,
“"ownerId": @,
"friendlyName”: "string",
"programmeId": o,
"externalAccountInfo”: {

Response Content Type | application/json ¥

Parameters

Show/Hide | List Operations

Show/Hide List Operations

Expand Operations

Expand Operations

Parameter Value Description %ﬁ;gm‘” Data Type
X-callref required) | Aunique call reference header string

to provide correlation

between application and

system. This can be

generated by your

application.
- [irequired) | This identifies your header string
programmeKey

tenant and programme
within OPE. The typical
format is
tenantId|programmeld,
for example team-

) [- - S

The OPC APIs

* An example client making use of the OPE APIs to create a card and transfer some funds on it.
=/
public class ExampleClient {

// Instrument types required for perfurming transactions

. . . private static final String MAMAGED_CARD_TYPE = "managed_cards”
To integrate with the API you will need to set up an API private static Final String MANAGED ACCOUNT_TYPE - ~moneged accounts”; ‘
. private static final String EXTERMNAL_ACCOUNT_TYPE = "external_accounts”;
client locally.
// Configuration settings - replace the following values with your own
- private static final String API_BASE_PATH = "http://localhost:8324/api”;

private static final String USERNAME = “user”;
private static final String PASSWORD Password123!";
private static final String TENANT_ID = “system";
private static final String PROGRAMME_ID = "1";

// The format of the programme key is as follows: ‘%tenant_id¥%|%programme_id%"
private static final String PROGRAMME_KEY = String.format("%s|%s"”, TENANT_ID, PROGRAMME_ID);

The Cllent Ilbrarles are responSIbIe for Creatlng and gnzit.&[t::;:zii Eit12nzf=t:2wA:iiCliEnt().setBasePath(APIiBASEJ’ATH);
sending the actual HTTP request and handling the final DefaultApi api = new Defaultdpi(client);
mapplng to the approprlate response type gn;ggigg:ilt’zr:,::rlggs::zzi:i iDns\jt\.2;:1‘::2::;i?;fi::dzzz(igltbde(L.FSERN»PAME).passwor‘d(PASSI»DORD).pr‘ogr‘ammeld(PROGR!-\!-‘IﬂEJD);

final LoginResult loginResult = api.authlogin(generateCallRef(), PROGRAMME_KEY, loginReguest);

// Create the authorisation header in the following format: 'X-TOKEN %auth_tokenZ'
final String authHeader = String.format("X-TOKEN %s", loginResult.getToken());

// Create a managed card instrument using an existing profile

final CreateManagedCardParams createCardRequest = new CreateManagedCardParams()
.profileld(cardProfileld)
.ownerld(cardOunerld)
.friendlyName("John's GBP card")

And here is an example create card request and -currency("GEP")

.issuingProvider("Issuing Provider")

subsequent transfer of 10 GBP on to the card. -processingProviden("Processing Provider”)

.nameOnCard("John Doe ");l

Please I’]Ote you Wi" need tO use the hard Coded Values final ManagedCard card = api.managedCardsIdCreate(generateCallRef(), PROGRAMME_KEY, authHeader, createCardRequest);
(C|rC|ed) In the request // Transfer 18 GBP from an existing managed a((ugnt instrument to the newly created card

final CreateTransferParams createTransferParams = new CreateTransferParams()
.profileld(transferProfileId)
.amount({new CurrencyAmountMessage().currency("GBP").amount("1000")) // 10.88 GBP
.sourceInstrumentId(new TypedId().type(MANAGED ACCOUNT_TYPE).id(managedAccountId))
.destinationInstrumentId(new TypedId().type(MANAGED_CARD_TYPE).id(card.getId()));
api.transfersldCreate(generateCallRef(), PROGRAMME_KEY, authHeader, createTransferParams);

- e-EE

Dealing with multiple clients through Programmes

An important consideration when designing an Application is to determine how an Application deals with multiple
clients. After the developer completes development and testing, a Programme Manager will use the Application for
one or more clients.

To do so, the Programme Manager creates a Programme for a client and defines all the client-specific configuration
in that Programme.

Across all API method invocations, the developer has to specify the Programme upon which the operation is to take
place.

m/_DPE N\

Programme 1 '

\m g
d M

el
P

Application Ul &
Logic

[m— N]

[0 1
P

Pre-defined Profiles

You will observe that some of the APl methods have a parameter called ‘Profile’. A Profile consists of a group of properties
that define a type of the requested instance, be it an identity, a payment instrument or a transaction. Multiple profiles can be

defined for a Programme:

Identity Profile:
= UK only

Card Profile:
Single Spend
Max Transfer 510

Card Profile:
Multi Spend
Max Transfer 530

/ [Corporate

__EEEC

‘
i i

\

/

The developer specifies the Profile name for the type of Virtual card that is to be created.

Profiles cannot be created on-the-fly: this is not a limitation of the APIs or OPC. Typically

cards without authorisation.

Ixaris has pre-created a set of Profiles - these Profiles can be updated and new ones added from the OPC SandBox when the

Developer is testing the Application.

i - [() -

configurations need to be pre-
approved by the Programme Manager and it is important that the developer is not allowed to create new unapproved types of

Testing the Application in the OPC SandBox

An Application is to be tested in the context of a specific Programme that defines specific Profiles.

The OPC SandBox is a portal that enables the developer to create Programmes, define Profiles and to check instances (of identities,
cards, transactions etc.) to confirm expected behaviour.

A test Programme, with test Profiles, has been created by Ixaris for testing purposes.

Below is the view of the sandbox that shows a list of profiles that have been set up, and the actions available from a given profile:

O Profiles

NAME PAYLET TYPE PAYLET NAME STATE TAGS

Profile 975930B9101271040 Withdraw WITHDRAWAL ACTIVE

[anoge rome Navigate and search
Profile 97593083101270016 Depasit DEPOSIT ACTIVE = - f0r InStanceS

View Programme

Profile 97593089101269760 Transfer TRANSFER ACTIVE View Instances

Profile 97593089101269504 External Account EA ACTIVE

. - -)

Using the OPC Simulator

There are a number of functions related to an Application that cannot be tested through the API — primarily these are interactions and
data flows that involve external 3rd party services.

The OPC Simulator is a testing tool that allows for the simulation of these external events. The following are the functions covered
through the Simulator

[Corporate Identity]

Simulate authorization on a card -

Issued to Issued to simulates a standard purchase
authorisation at a Merchant
External Managed Managed
Account Accounts Cards

_ _ Simulate a settlement on a card —
Simulate a Deposit from an External simulates settlement, updating the balances
bank account to a balance — R of the card & recording a purchase
increments Managed Account balance Withdraw transaction against the card

Deposit Transfer

=B

‘Hello World’ Application

Now that you are familiar with the payment model we can take a look at an example application, showing how you can use OPC to
issue a virtual card and load it with funds in order to perform a purchase (it assumes the corporate identity has been created and there

are available funds in the managed account). Go to Swagger and try the following operations:

Select POST on /managed_cards/_/create
1. Create a . "
) Select Try this Operation
Virtual Card Enter Parameters including Programme id & Prafile id

Send request & check response

Look up virtual card id

Execute POST on fcard_issuing_simulator/Settlement
. (entering CreateSettlementSimulationParams)

transaction Check Response

|

5. Via OPE sandbox, view the transactions
recorded against the Virtual Card Instance

4. Generate a
clearing

)

4

Select POST an /transfers/_/create

2. Load funds on Select Try this Operation

to the card Enter Parameters including Programme id & Profile id
Send request & check response

|

Look up virtual card id
Execute POST on /card_issuing_simulator/authorisation
(entering CreateAuthorisationSimulationParams)

Check Response

3. Generate a test
authorisation

transaction

Click on Application

Click on Programme

Look up Virtual Card Instance

View Transactions recorded against the Card Instance

